Quiz one: MTH 221, Fall 2016

Ayman Badawi

QUESTION 1. Find the solution set to the following system

$$x_2 - x_3 + x_4 = 0$$

$$x_1 - x_2 + x_3 - x_4 = 4$$

$$-2x_1 + x_3 + x_4 = 8$$

QUESTION 2. Consider a system of this form

$$x_1 + 2x_2 + x_3 = 10$$

-x₁ + ax₂ - x₃ = 0
2x₁ + 4x₂ + bx₃ = 20

i)For what values of a, b will the system be consistent?

ii) For what values of a, b will the system have unique solution ?

Faculty information

Quiz II: MTH 221, Fall 2016

Ayman Badawi

QUESTION 1. Let A be a 4×4 matrix such that 3rd column of A is identical to the 4th column of A. Consider the system of linear equations AX = C, where C = 3rd column of A.

(i) One particular solution to the above system is

–, ID –

- (ii) a second particular solution to the system is
- (iii) a third particular solution to the system is
- (iv) Does the system have infinitely many solutions? why?

QUESTION 2. Let
$$A = \begin{bmatrix} 2 & -1 \\ -4 & 2 \\ 0 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$.

i)Use the method of linear combination of columns to find the matrix AB.

ii) Let BA = C. Use dot product method to find $c_{2,1}$, and $c_{1,2}$.

Faculty information

Quiz III: MTH 221, Fall 2016

Ayman Badawi

QUESTION 1. Let $Q_1 = (1, -1, 2, 3), Q_2 = (-1, 2, 6, 0), Q_3 = (-1, 1, -1, 0), Q_4 = (-1, 1, -2, -2).$

(i) Are Q_1, Q_2, Q_3, Q_4 independent? SHOW THE WORK

(ii) Find all values of a, b, c, d such that $aQ_1 + bQ_2 + cQ_3 + dQ_4 = (0, 0, 0, 0)$

(iii) Can you find at least one value for a and at least one value for b and at least one value for c so that $Q_4 = aQ_1 + bQ_2 + cQ_3$.

QUESTION 2. Let $D = span\{(1,1,1), (-1,0,1), (0,1,2)\}$. Find dim(D). Is $D = R^3$? explain why yes or why NO.

Faculty information

Quiz IV: MTH 221, Fall 2016

Ayman Badawi

QUESTION 1. Let $A = \begin{bmatrix} 4 & -3 \\ 2 & 1 \end{bmatrix}$. Find A^{-1} if possible

—, ID —

QUESTION 2. Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 1 & -1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
. a) Find A^{-1} if possible.

Is span{Row1, Row2, Row3, Row4} = R^4 ? Why?

Faculty information

Name	ID
Name	, ID

© copyright Ayman Badawi 2016

MTH 221 Linear Algebra Fall 2016, 1-1

Quiz V: MTH 221, Fall 2016

Ayman Badawi

QUESTION 1. Given A is a 3 × 3 matrix such that $A \overrightarrow{3R_1} = B \xrightarrow{-4R_2 + R_3 \rightarrow R_3} C = \begin{bmatrix} 0 & 1 & -4 \\ 1 & -1 & 8 \\ 0 & 2 & -7 \end{bmatrix}$

(i) Find |A|

(ii) Find $Span\{R1, R_2, R_3\}$, where each R_i is a row of A.

(iii) Find A

(iv) Find $|2A^t A^{-1}|$.

Faculty information

Quiz VI: MTH 221, Fall 2016

Ayman Badawi

QUESTION 1. Given A is a $3 \times$ matrix and $A \xrightarrow{2R_3} B \xrightarrow{-4R_3 + R_1 \rightarrow R_1} C$. (i) Find two elementary matrices F_1, F_2 such that $F_1F_2A = C$.

—, ID —

(ii) Find an elementary matrix W such that WC = B.

QUESTION 2. Let
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
.

(i) Find the LU-factorization of A.

(ii) Find L^{-1} .

(iii) Use (1) and (2) to find the solution set to $AX = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

Faculty information

—, ID —

MTH 221 Linear Algebra Fall 2016, 1–2

Quiz 7: MTH 221, Fall 2016

Ayman Badawi

Submit solution to this QUIZ on Thursday Nov. 17, at 3pm, just leave it on the table

QUESTION 1. Let
$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(i) Find $C_A(\alpha)$.

(ii) Find the eigenvalues of A.

(iii) For each eigenvalue a find the eigenspace E_a .

(iv) If A is diagonalizable, then find a diagonal matrix D and an invertible matrix Q such that $A = QDQ^{-1}$.

QUESTION 2. Use the least square method in order to find "best fitting plane" z = ax + by + c that is close to the points (1, 1, 0), (2, 1, 1), (-1, 1, 1), (-1, -1, 1).

Faculty information

---, ID ----

MTH 221 Linear Algebra Fall 2016, 1–1

Quiz 8: MTH 221, Fall 2016

Ayman Badawi

Submit solution to this QUIZ on Thursday Nov. 25, at 3pm, just leave it on the table

QUESTION 1. Let $D = span\{x^3 - x - 1, -x^3 - 2x - 2, 6x + 6\}$. 1) Find dim(D)

2) Find a basis for *D*.

3) Does the polynomial $-2x^3 - 7x - 7$ belong to D? explain

QUESTION 2. Let $M = \{f(x) \in P_4 \mid \int_0^1 f(x) \, dx = 0\}$. 1)Show that M is a subspace of P_4

2) Find dim(M)

3) Find a basis for M.

Faculty information